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The rapid discovery of sequence information from the Human
Genome Project has exponentially increased the amount of data
that can be retrieved from biomedical experiments. Gene expres-
sion profiling, through the use of microarray technology, is rapidly
contributing to an improved understanding of global, coordinated
cellular events in a variety of paradigms. In the field of toxicology,
the potential application of toxicogenomics to indicate the toxicity
of unknown compounds has been suggested but remains largely
unsubstantiated to date. A major supposition of toxicogenomics is
that global changes in the expression of individual mRNAs (i.e.,
the transcriptional responses of cells to toxicants) will be suffi-
ciently distinct, robust, and reproducible to allow discrimination of
toxicants from different classes. Definitive demonstration is still
lacking for such specific “genetic fingerprints,” as opposed to
nonspecific general stress responses that may be indistinguishable
between compounds and therefore not suitable as probes of toxic
mechanisms. The present studies demonstrate a general applica-
tion of toxicogenomics that distinguishes two mechanistically un-
related classes of toxicants (cytotoxic anti-inflammatory drugs and
DNA-damaging agents) based solely upon a cluster-type analysis
of genes differentially induced or repressed in cultured cells during
exposure to these compounds. Initial comparisons of the expres-
sion patterns for 100 toxic compounds, using all ; 250 genes on a
DNA microarray (; 2.5 million data points), failed to discriminate
between toxicant classes. A major obstacle encountered in these
studies was the lack of reproducible gene responses, presumably
due to biological variability and technological limitations. Thus
multiple replicate observations for the prototypical DNA damag-
ing agent, cisplatin, and the non-steroidal anti-inflammatory
drugs (NSAIDs) diflunisal and flufenamic acid were made, and a
subset of genes yielding reproducible inductions/repressions was
selected for comparison. Many of the “fingerprint genes” identified
in these studies were consistent with previous observations re-
ported in the literature (e.g., the well-characterized induction by
cisplatin of p53-regulated transcripts such as p21waf1/cip1 and PCNA
[proliferating cell nuclear antigen]). These gene subsets not only
discriminated among the three compounds in the learning set but
also showed predictive value for the rest of the database (; 100

compounds of various toxic mechanisms). Further refinement of
the clustering strategy, using a computer-based optimization al-
gorithm, yielded even better results and demonstrated that genes
that ultimately best discriminated between DNA damage and
NSAIDs were involved in such diverse processes as DNA repair,
xenobiotic metabolism, transcriptional activation, structural main-
tenance, cell cycle control, signal transduction, and apoptosis. The
determination of genes whose responses appropriately group and
dissociate anti-inflammatory versus DNA-damaging agents pro-
vides an initial paradigm upon which to build for future, higher
throughput-based identification of toxic compounds using gene
expression patterns alone.

Key Words: toxicogenomics; gene expression profiling; cDNA
microarrays; non-steroidal anti-inflammatory agents; DNA dam-
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The genome projects continue to produce gene sequence
information at an accelerating rate (http://www.ncbi.nim.
nih.gov/Web/Genbank). Sequencing of the human genome will
soon be essentially complete (Marshall, 1998; Pennisi, 2000a;
Ventneret al., 1998) and the rat and mouse genomes will likely
be among the next to receive priority (Pennisi, 1999, 2000b).
Complementary technologies are under development that will
take advantage of the new genomic information to explore
biological processes. Gene microarray technology was devel-
oped as a way to simultaneously monitor the expression levels
of large numbers of genes (Cheeet al., 1996; Schenaet al.,
1995; Shalonet al.,1996), eventually on a genome-wide scale.
The ability to probe cell biology in this way is expected to
produce functional insights that were not possible using pre-
vious approaches.

There is great interest in the application of this technology to
toxicology, both as a powerful new tool for mechanistic studies
and as a diagnostic parameter for toxicity screens that may far
surpass traditional approaches in terms of sensitivity and
speed. A main assumption in the use of toxicogenomics is that
toxicity is accompanied by changes in gene expression that are
either causally linked to the toxic outcome or are downstream
sequelae of the toxic exposure. Monitoring gene expression
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profiles, induced directly or indirectly by different classes of
toxicants, should eventually allow recognition of signature
patterns that are representative of specific toxicities. Once
recognized, these patterns could be used to evaluate new com-
pounds (pharmaceutical candidates) possessing undefined tox-
icities. This is a compelling scenario that has received wide-
spread attention, but to date there is little published data to
support such a possibility (Afshariet al., 1999; Braxton and
Bedilion, 1998; Nuwaysiret al., 1999).

The present studies were undertaken to evaluate the potential
use of gene expression analysis to detect and distinguish tox-
icants with different mechanisms of action. HepG2 human
hepatoma cells were selected as the model system in an attempt
to minimize such complicating factors as cell type heteroge-
neity and interindividual differences. A single time point of
24 h was chosen to eliminate the potentially confusing contri-
bution of nonspecific immediate early stress responses of cells
exposed to toxic stimuli. To minimize the influence of potency
differences, all compounds were first tested for cytotoxicity in
HepG2 cells using a reductase activity assay at 72 h, and an
ED30 dose was selected for monitoring gene expression at the
earlier time point of 24 h.

The ability to detect reproducible gene expression patterns
that are consistent within a class of toxicants and different
across classes is key to the emerging field of toxicogenomics.
These studies attempt to determine whether such patterns can
be observed and as such are an early step towards proving
principle.

MATERIALS AND METHODS

Chemicals and reagents.Cell culture reagents were obtained from Gibco
BRL (Frederick, MD). Chemicals were obtained from Sigma Chemical Com-
pany (St. Louis, MO) or Aldrich Chemical Company (Milwaukee, WI) and
were of the highest purity commercially available.

Cell culture. HepG2 human hepatoma cells were obtained from ATCC
(catalog number HB-8065). Cells were maintained in log growth phase in
minimal essential media (MEM) supplemented with 10% fetal bovine serum.
Antibiotic or antifungal agents were not used, to avoid the potential effects of
these agents on gene expression and cytotoxicity assays. Cultures were re-
established after 20 passages.

Cytotoxicity assay. HepG2 cells were grown in 96-well black, clear-
bottom plates (Polyfiltronics, NUNC) at 37°C in a humidified cell culture
incubator, in 5% CO2 and minimal essential media with 10% fetal bovine
serum. Cells at 30–50% confluence were treated with test compound (0.1
mM–100mM, in 0.5 log concentration increments) or vehicle (media or,1%
DMSO) for 72 h and cellular reductase activity was measured using an Alamar
Blue assay. One hundredml of Alamar Blue (diluted 1:50 in Hanks Buffer) was
added and fluorescence readings of the 96-well plate were immediately re-
corded using a Wallac Victor II plate reader with excitation at 535 nm and
emission at 580 nm. The initial zero time-point readings (which were essen-
tially equal to Alamar Blue readings from an empty culture plate) were
subtracted from readings at 1 h to determine cell viability. Control-cell wells
showed a pronounced increase in fluorescence at this time, whereas dead-cell
wells were essentially equal to background. This assay is extremely sensitive
and detects responses unaccompanied by cell death as measured morpholog-
ically or by assays such as LDH release. Thus concentrations producing
; 30% inhibition of fluorescence at 72 h were chosen to examine genomic
effects of test compounds at the earlier, minimally cytotoxic time point of 24 h.

Data analysis overview. Multiple replicate RNA samples were obtained for
the genotoxic compound, cisplatin, its relatively inactive stereoisomer, transplatin,
and the hepatotoxic nonsteroidal anti-inflammatory compounds diflunisal and
flufenamic acid. Expression analysis was performed using a cDNA-based DNA
microarray containing approximately 250 inducible genes (see Appendix) that
respond during expression of various toxic endpoints. Their identification was
based on extensive reviews of the scientific literature and on unpublished pilot
studies that were conducted during the past several years as part of the core
business activities at Phase-1 Molecular Toxicology (Farr and Dunn, 1999).
Expression patterns from replicate experiments were examined for reproducibility
and the subset of significantly regulated genes was used for subsequent similarity
metric-based correlational analyses described below.

A second selection at the end of the study was performed using a compu-
tational algorithm that identified the reproducibly regulated genes that best
clustered the class of compounds in question and also distinguished the class
from different compound classes (see Figure 12 for a detailed description). To
determine whether the discovered relationships could be generalized, the
responses of this gene set for cisplatin, flufenamic acid, and diflunisal were
then examined across a broader database of expression profiles, to approxi-
mately 100 toxic compounds in the Phase-1 toxicology database (http://
www.phase1tox.com). To facilitate the comparisons, compounds were
grouped by mechanism of toxicity and/or mechanism of action based upon
extensive reviews of the scientific literature. From these analyses a battery of
genes was discovered whose expression pattern accurately discriminates DNA
damaging agents versus anti-inflammatory drugs.

Cell treatments, RNA isolation, and cDNA synthesis.Log growth-phase
HepG2 cells in T75 flasks (Corning) were treated with test compounds for
24 h. For the replicate determinations that were done for cisplatin, transplatin,
diflunisal, and flufenamic acid, the RNA samples were blinded for labeling,

FIG. 1. Initial correlational analysis of all toxic compounds in the database using all genes on the microarrays. HepG2 cells were treated with the various cytotoxic
compounds and relative changes in gene expression were ascertained using microarray analysis. Comparisons of the gene expression patterns between2 treatments were
made by Pearson’s correlation coefficient as described in Materials and Methods. A perfect positive correlation for all genes on the microarray of “11” is represented
by yellow (see color key), a lack of correlation between all genes of “0” is gray, while a perfectly negative correlation for all genes of “–1” is represented by blue. Each
small box in the plot represents the overall Pearson’s correlation coefficient observed between 2 treatments. This results in 10,000 comparisons (each of the 100
compounds with every other). By comparing each compound’s correlation with all others in this manner, a mirror-image correlation plot is obtained which is symmetrical
about a diagonal line of identity (i.e., the first box in the lower left-hand corner represents a correlational comparison of the first compound with itself). The letters
designate the following toxicant classes: A, anti-inflammatory; D, DNA-damagers; G, gene-synthesis inhibitors; L, low-dose DNA-damaging agents (non-toxic), M,
metabolic poisons; N, non-genotoxic controls; O, other; P, peroxisomal proliferators; and S, steroids. Red, blue, green, and pink circles are drawnaround 4 representative
Pearson’s correlations out of the 10,000 which illustrate the significance of the blue-yellow plots in further detail (see inset, upper right-hand corner). Inset: In the actual
correlational analysis, each of the; 250 genes are plotted on both axes for each treatment, to determine whether the magnitude of induction/repression between 2
treatments are identical (linearity with a positive slope5 1.0), opposite (linearity with a negative slope5–1.0), or somewhere in between. Red, r5 1.0: Perfect positive
correlation of clofibrate compared with itself; Green, r5 0.01: Lack of correlation between fenofibrate and iodoacetamide; Blue, r5 –0.51: Relative negative correlation
between naproxen and 1-chloro-2-nitrobenzene; and Pink, r5 0.89: Relative positive correlation between 2,4-dinitrophenol and prednisone.
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hybridization, and scanning. At the end of each treatment, total RNA was
isolated using RNA purification columns (Qiagen). Untreated sample RNA (20
mg) was mixed with anchored oligo dT, heated to 70°C for 10 min, cooled on
ice, and reverse transcribed with Superscript II RnaseH– (Gibco BRL) reverse
transcriptase in the presence of Cy5-dUTP. Treated sample RNA (20mg) was
reverse-transcribed with Cy3-dUTP as the fluorescent label. Reverse transcrip-
tion reactions proceeded at 420C for 2 h and unincorporated fluorescent
nucleotides were removed by centrifugation (20,8003 g). Fluorescence units
remaining in the purified probes were determined for all samples and normal-
ized so that equivalent amounts of each label were added to all slides in a
hybridization experiment (below).

cDNA microarray hybridization and analysis. Purified, labeled cDNA
was boiled for 5 min in 30ml of hybridization buffer (50% formamide, 53
SSC, 0.1% SDS), then cooled and maintained at 70°C. The solution was
applied to the microarray slide and hybridized in a humidified custom hybrid-
ization chamber overnight at 42°C. Slides were washed in 23 SSC, 0.2% SDS
for 5 min, then 0.053 SSC for 1 min. Slides were dried and then scanned
using a confocal laser scanner, and fluorescence intensities were recorded.

Data normalization. The data for each gene was normalized by dividing
individual treated and untreated fluorescence values by the medians of the
treated and untreated fluorescence values in each experiment, respectively. The
expression ratio for each gene, determined by the ratio of treated to untreated
values, was then log transformed.

Similarity matrix. All statistical analysis was carried out using algorithms
written in Oracle PL/SQL and Java. To measure the degree of similarity between
the gene expression profiles produced by different toxicant treatments, the Pearson
correlation coefficient was chosen. The Pearson correlation coefficient is a com-
mon similarity metric for hierarchical and other types of cluster analysis applied to
gene expression patterns (Alizadehet al., 2000; Ben-Doret al., 1999; Eisenet al.,
1998; Rosset al., 2000; Scherfet al., 2000; Weinsteinet al., 1997).

The Pearson correlation coefficient for experimenti and experimentj, rij , is
given by:

r ij 5 r ji 5
S ~ xig 2 x̄i!~ xjg 2 x̄j!

~n 2 1!sxi sxj

wherexi andxj are the log-transformed expression profiles for experimenti and
experimentj, (xig 2 x̄i) is the deviation of geneg for experimenti from the
mean expression value for experimenti, (xjg 2 x̄j) is the deviation of the same
gene for experimentj from the mean for experimentj, sxi andsxj are the sample
standard deviations for experimenti and experimentj, n is the number of
pairs of genes, and the summationS is across thei 5 1,2, …., n pairs.

The correlation coefficient was calculated for all pairs of experiments. For
m experiments, exactlym2 coefficients were calculated. Since certain genes
were not examined across all experiments, missing gene expression values in
each experiment were ignored in the calculation.

Graphical representation of data. The similarity matrix was displayed
using Spotfire Pro data visualization software (Spotfire Inc., http:// www.
spotfire.com). The toxicant expression profiles were ordered on thex and y
axes by grouping together toxicants by assigned mechanisms of action. Others
have used similar types of visual representations; however in those cases the
order of items on thex and y axes were determined by the application of a
clustering algorithm (Ben-Doret al., 1999; Weinsteinet al., 1997).

Each of the 10,000 cells in a plot represents a comparison of the gene
expression profile between 2 single toxicant treatments. The color in each cell
of the plot reflects the similarity between the 2 experiments. The 2-color scale
used to represent the correlation coefficient ranged from yellow for a perfect
correlation coefficient of 1.0 to blue for an absolute negative correlation
coefficient of –1.0. A grayish color, resulting from equal parts blue and yellow,
signifies no correlation between the 2 samples (r 5 0). Because of the nature
of the plot, the similarity matrix is symmetric about the main diagonal and the
correlation coefficients on the diagonal are unity, because each sample is 100%
correlated with itself.

The initial correlational analysis was performed across the entire database of
100 toxic compounds, using all genes on the microarray (; 250). Subsequent
correlations used smaller subsets of genes, which were found to be reproduc-
ibly and differentially expressed between a given set of treatments or based
upon the computer optimization algorithm (see Fig. 12).

RESULTS

Gene Expression Patterns Do Not Discriminate Between
Toxicant Classes, Using All DNA Elements
on the Microarray

Following individual treatment of HepG2 cells with approx-
imately 100 compounds having various mechanisms of action

FIG. 2. Reproducibility of gene responses to cisplatin. HepG2 cells were
treated on different occasions with identical concentrations of cisplatin (3mg/ml;
n 5 13) and gene changes were monitored by microarray analysis. Each bar for a
given gene group represents the relative induction/repression of that gene in a
single cisplatin experiment. Results are expressed as a normalized value where a
value of zero equals no change from control and a value of 1 equals 100% change,
2 equals 200% change, etc. (A) Induction/repression of transcripts that changed in
an identical direction in all experiments; (B) variable induction/repression of
transcripts that responded inconsistently to cisplatin.
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and toxicity (listed in Appendix), RNA from each sample was
harvested and then analyzed using microarrays as described.
The normalized expression levels of all genes following each
treatment were entered into the Phase-1 database and then
subjected to further analysis.

After RNA changes for each treatment were determined
relative to control, the change in a gene’s expression pattern
following toxicant exposure (fold induction or repression) was
compared to its change following exposure to every other
compound in the database. Comparisons were performed, us-
ing the Pearson’s correlation coefficient as described in Mate-
rials and Methods. This was repeated for; 250 genes from all
100 toxicant samples (10,000 comparisons,; 2.5 million data
points), and a similarity score for the overall gene expression
profile was then assigned pair-wise between compounds as
described in Materials and Methods. By comparing each com-
pound’s correlation with all others, a mirror-image correlation
plot was obtained that was symmetrical about a diagonal line of
identity (Fig. 1). This type of analysis revealed that inclusion of
all genes on the array in the expression comparisons failed to
yield significant correlations between database compounds
having similar toxic or pharmacologic actions.

Reproducibility of the Gene Expression Data
between Experiments Using Cisplatin

Since the expression pattern for each of the; 100 com-
pounds in the initial database was determined only once, an
equivalent weighing of all gene inductions, whether represen-
tative or not, may have obscured the presence of significant
correlations. To examine this possibility, multiple replicates
were obtained for the genotoxic compound cisplatin by per-

forming treatments at 13 separate times, with each experiment
taken to completion before the next was begun.

This exercise showed quite clearly that certain gene induction
events occurred consistently while others were highly variable.
Although more than 200 genes were analyzed, only a small
percentage appeared to respond similarly to cisplatin over all
experiments (Fig. 2A), whereas most genes responded variably or
with average fold inductions that were less than twice the standard
error of the mean (Fig. 2B). Approximately 20% of the genes
analyzed in each of the cisplatin experiments were induced or
repressed more than 2-fold by cisplatin exposure after 24 h. No
relationship was apparent between the magnitude of a gene in-
duction event and its reproducibility in subsequent experiments
(Fig. 3). Moreover, plotting intra-experimental coefficient of vari-
ation (COV) against inter-experimental SEM for each gene also
failed to show a relationship (Fig. 4).

Comparison of Gene Induction Profiles for Cisplatin
and Transplatin

Analysis of the genes that were consistently and significantly
regulated by cisplatin (Fig. 5) demonstrated significant cispla-
tin-dependent induction of several subsets of genes with roles
in oxidative stress (SOD [superoxide dismutase], gluta-
thione-linked enzymes), DNA damage/repair (p21waf1/cip1,
PCNA, DNA polymerase beta) and apoptosis (Fas, BAK).
Cisplatin also caused a notable repression of several co-regu-
lated ER stress-response genes (grp78, grp 94 and disulfide
isomerase-related protein 72 [Erp72]), which function as mo-
lecular chaperones and appear to inhibit Ca21-dependent cell
death (Liuet al., 1998; Yoshidaet al., 1998).

Further microarray analyses were also performed on trans-
platin as a non-genotoxic control, in order to identify gene

FIG. 3. Lack of relationship between the magnitude of a gene induction
event and the standard error of the mean across all experiments. The fold
induction/repression of each gene on the microarray for a single cisplatin
experiment was calculated and then plotted against the SEM for each gene on
the microarray over all experiments.

FIG. 4. Lack of relationship between intra-experimental coefficient of
variation and inter-experimental standard error of the mean. The average COV
value for each gene from a single experimental chip was plotted against the
SEM for that gene across all experiments.
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induction events specific to the DNA-damaging agent, cispla-
tin. In an initial experiment, equimolar concentrations of the 2
stereoisomers (3mg/ml, based on the ED30 for cisplatin on
reductase activity in HepG2 cells) were used and differential
gene inductions were observed (Fig. 6).

When this subset of genes was used to repeat correlational
comparisons across the database of toxic compounds, the sim-
ilarity matrix revealed evidence of weak “clustering” for sev-
eral DNA-damaging agents (Fig. 7). However, we noted that 3
mg/ml transplatin was non-cytotoxic in HepG2 cells. To rule

FIG. 5. Induction/repression of genes involved in diverse processes by cisplatin in HepG2 cells. Genes undergoing statistically significant (mean – 2 SEM.
0) induction/repression by cisplatin were classified according to function and are presented. In order (from left to right), the following genes weresignificantly
changed following exposure to 3mg/ml cisplatin for 24 h. Apolipoproteins: apolipoprotein A1, apolipoprotein C III. Apoptosis: Fas antigen, BAK, bax alpha,
BAG-1, TRADD. Cell cycle: c-jun, MDM-2, cdk-4 (cyclin-dependent kinase 4). DNA damage/repair: GADD 45, rad 6 homolog, DNA polymerase beta,
ATP-dependent helicase II, PCNA, damage-specfic DNA binding protein p48 subunit, DNA dependent protein kinase, p21waf1/cip1, ERCC1, RAD, Rad 51
homolog, ERCC3, DNA mismatch repair protein (PMS2). ER molecular chaperones: calnexin, ERp72, grp 94, grp 78 (glucose regulated proteins 78 and 94).
Fatty acid oxidation: peroxisomal fatty acyl coA oxidase, very long chain acyl coA dehydrogenase, lysyl oxidase, farnesol receptor, liver fatty acid binding
protein. Serum amyloid proteins: SAA-2, SAA-1 alpha. Oxidative stress response: Mn21-SOD, epoxide hydrolase, glutathione peroxidase, glutathione synthetase,
and iNOS (inducible nitric oxide synthase). Dehydrogenases: ALDH 1, ALDH 2 (aldehyde dehydrogenases 1 and 2), and GADPH (glyceraldehyde-3-phosphate
dehydrogenase). Structural proteins: alpha-tubulin, beta-actin.

FIG. 6. Differential expression of genes following 3mg/ml cisplatin versus 3mg/ml transplatin, after 24 h. HepG2 cells were treated as described and the
isolated RNA was subjected to microarray analysis. Genes undergoing statistically significant induction/repression were identified and compared,to identify
genes differentially regulated between the 2 treatments.

FIG. 7. Correlational analysis of all compounds in the database, using genes differentially expressed between cisplatin (3mg/ml) and transplatin (3mg/ml)
on the microarrays. Comparisons of the gene expression patterns between all treatments were made by Pearson’s correlation coefficient, as described in Figure
1, except that only genes differentially regulated between equimolar concentrations of cisplatin and transplatin were used for comparisons.
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out general (nonspecific) cellular responses to toxic insult, a
100-fold higher concentration of transplatin that gave a similar
cytotoxic response in HepG2 cells was chosen for further
microarray comparison. This exercise detected genes that were
specifically induced or repressed by the DNA-damaging agent
cisplatin relative to a similarly cytotoxic dose of its non-
genotoxic stereoisomer transplatin (Fig. 8). While several of
the genes remained differentially elevated by cisplatin (PCNA,
Fas, RAD 6 homolog, DNA polymerase beta), several others
were no longer differentially expressed between the two treat-
ments. Indeed, one of the most surprising absences in Figure 8
is the p53-dependent signaling molecule, p21waf1/cip1, which was
induced to a similar extent by both treatments and was there-
fore removed from the differentially expressed gene subset.
Whether the elevation of p21waf1/cip1 is due to DNA damage at
higher concentrations of transplatin is unclear at present, but is
a subject of current interest.

Repeating the correlational comparisons across the database
with the set of differentially regulated genes (from Fig. 8)
maintained the similarity among DNA-damaging agents but
failed to further dissociate DNA-damaging agents from anti-

inflammatory compounds (Fig. 9). This exercise did, however,
begin to discriminate among certain DNA damaging agents
from select non-toxic controls and metabolic poisons (Classes
N and M). While these correlations appear quite robust, it
should be noted that the compounds from these latter classes in
the database were analyzed by microarray only once. It is
unknown whether these correlations would remain as striking
following replicate observations.

Detection of Statistically Significant Gene Sets for
Distinguishing Anti-inflammatory Compounds
Versus the DNA Damaging Agent, Cisplatin

To identify genes that responded consistently and signifi-
cantly to hepatotoxic anti-inflammatory drugs, diflunisal and
flufenamic acid were analyzed in replicate experiments, and
genes that responded differentially, following cisplatin and
anti-inflammatory treatment, were identified (Fig. 10). This
subset of genes that were differentially and consistently regu-
lated between cisplatin and anti-inflammatories was used to
repeat the correlational comparisons across the database (Fig.

FIG. 8. Differential expression of genes following 3mg/ml cisplatin versus an equally cytotoxic dose of transplatin (300mg/ml) after 24 h. HepG2 cells were
treated as described and the isolated RNA was subjected to microarray analysis. Genes undergoing statistically significant induction/repression were identified
and compared, to identify genes differentially regulated between equitoxic concentrations of the DNA-damaging agent and its inactive stereoisomer.
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11). The improved predictability of this gene set for the ma-
jority of DNA-damaging agents and anti-inflammatory com-
pounds substantiates this approach.

Algorithm-based Optimization of Gene Sets for Clustering
Compounds of Known Toxicity

To confirm the above results, a second type of analysis was
performed. This analysis used a computational algorithm (Fig.
12) to select the set of genes that were (1) most similar in their
induction responses to DNA damaging agents, (2) similar in
response to non steroidal anti-inflammatory compounds, and
(3) also different in response between these 2 classes. A final
correlational analysis using this algorithm-optimized gene set
(Fig. 13) showed the strongest evidence of clustering between
DNA-damaging agents and cytotoxic anti-inflammatory
agents, including clusters for mechanisms (metabolic poisons,
steroids) outside of the learning set. The set of genes selected
with this approach (Fig. 13, legend) had some overlap with the

previous set, but also showed differences. Overall, 7 of the 20
genes were common between the 2 approaches.

DISCUSSION

The rapid and highly publicized development of gene-ex-
pression microarray technology during the past 5 years has led
to a proliferation of potential applications. Considerable efforts
are underway to utilize microarray technology to detect bio-
logically relevant patterns of gene expression, and initial re-
sults are beginning to appear (DeRisiet al., 1997; Iyeret al.,
1999; Martonet al., 1998). Within the pharmaceutical industry
and elsewhere there is widespread interest in applying this
technology to facilitate toxicity testing, in either a research
mode for mechanistic investigations or in a diagnostic mode to
screen preemptively for expression patterns associated with
established toxicities (Nuwaysiret al., 1999, Rodiet al., 1999).
Output of prospective pharmaceuticals from drug discovery

FIG. 9. Correlational analysis of all compounds in the database using genes differentially expressed between cisplatin (3mg/ml) and transplatin (300mg/ml)
on the microarrays. Comparisons of the gene expression patterns between all treatments were made by Pearson’s correlation coefficient, as describedin Figure
1, except that only genes differentially regulated between equitoxic concentrations of cisplatin (3mg/ml) and transplatin (300mg/ml) were used for comparisons.
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organizations is increasing throughout the industry, due in
large part to application of enabling technologies such as
genomics, high throughput screening, and combinatorial chem-
istry (Drews, 2000). Downstream resources are strained be-
cause drug development cannot keep pace using current meth-
odologies. Thus, powerful drivers exist for improving the rate
and efficiency of the drug development process. The utilization
of gene-expression approaches appears to be a feasible solu-
tion, albeit one whose promise is as yet unrealized.

A variety of “toxicology arrays” are now available from
several commercial vendors, consisting of genes with demon-
strated or presumed relevance to toxic responses. These arrays
can and will be used to produce large amounts of gene-
expression data. However, utilization of the data for toxicity
evaluation requires that the relevance of the gene expression
patterns can be ascertained. Currently the application of toxi-
cogenomics depends less on the availability of suitable gene
arrays than on the existence of a reliable gene-expression
database consisting of responses to prototypical toxic com-
pounds. Indeed, the rate of application of toxicogenomics
within the pharmaceutical industry will likely be directly re-

lated to the degree of complexity that is encountered in devel-
oping such a database. If expression patterns are found to be
robust and reproducible, then meaningful and representative
response patterns may be found rapidly. On the other hand, if
expression patterns are found to be of lesser magnitude and
reproducibility, or if they show high variability for a given
biological system, depending on influences such as time or
exposure conditions, then obtaining representative response
patterns may become a long-term goal.

The studies described here were undertaken to determine
whether toxicologically meaningful gene-expression responses
could be detected in a model system. The key element was the
availability of a database containing response patterns to var-
ious toxic compounds in a single-cell line under standardized
conditions. It is encouraging that clustering can be observed so
readily at this early stage of database development. Clusters of
positive correlations were observed for compounds classified
as DNA-damaging agents and for compounds classified as
cytotoxic NSAIDs. For most compounds in the databasen 5 1,
which may be suboptimal, as evidenced by the variability
observed for the replicate treatments in this study. The subsets

FIG. 10. Differential expression of genes following 3mg/ml cisplatin versus equally cytotoxic doses of diflunisal and flufenamic acid (75mg/ml) after 24 h.
HepG2 cells were treated as described and the isolated RNA was subjected to microarray analysis. Genes undergoing statistically significant induction/repression
were identified and compared to identify genes differentially regulated between equitoxic concentrations of a representative DNA damaging agent and 2
representative NSAIDs.
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of genes used for the correlational analyses were selected using
compounds for which replicate data were available (cisplatin,
flufenamic acid, and diflunisal), but the strong clustering for
other DNA-damaging agents and NSAIDs are based on single
microarray determinations. It is interesting to speculate that the
gene subsets identified in replicate analyses may represent
those genes that demonstrate consistent responses for the tox-
icant class in question, which may explain why clustering
could be observed for other compounds analyzed only once.
However, until existing methodologies improve, replicate anal-
yses may be necessary to identify significantly regulated genes
with sufficient certainty for assignment of toxic mechanism.
Even with improved methodology, the biological variability in
the chosen model system may still require replicate analyses to
determine genes that are significantly and reproducibly
changed. The ability to observe correlations for mechanistic
classes outside the learning set suggests that relatively small
sets of genes may be sufficient to distinguish a variety of

different toxic mechanisms. In the future, small “information-
rich” gene chips may provide greater utility in assigning/
discriminating toxic mechanisms. To identify the smaller sub-
sets of genes useful for toxicant classification in any given
system, it may be necessary to first perform transcriptional
profiling using gene chips that span entire genomes. Once these
genetic relationships are established, the use of gene microar-
rays may ultimately diminish and be replaced by more man-
ageable and cost-effective platforms to identify unknown tox-
icants, based upon their effects on a limited number of
predictively “valuable” genes.

The experiments in this study did detect numerous cisplatin-
inducible genes that are in agreement with previous observa-
tions in the literature. These include induction of several p53-
responsive genes (Aubrechtet al., 1999) including p21waf1/cip1

(Zambleet al., 1998), GADD45 (Sunet al., 1995) and PCNA
(Shivakuvaret al., 1995). We also detected potent induction of
Fas, which has been shown to mediate apoptosis in HepG2

FIG. 11. Correlational analysis of all compounds in the database, using genes differentially expressed between cisplatin (3mg/ml) and diflunisal/flufenamic
acid (75 mg/ml) on the microarrays, after 24 h. Comparisons of the gene expression patterns between all treatments were made by Pearson’s correlation
coefficient, as described in Figure 1, except that only genes differentially regulated between equitoxic concentrations of cisplatin (3mg/ml) and diflunisal and
flufenamic acid (75mg/ml) were used for comparisons.
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cells exposed to cisplatin (Mulleret al., 1997). JNK activation
and prolonged c-Jun induction have also been proposed to
mediate apoptosis following cisplatin exposure (Nehmeet al.,
1997; Sanchez-Perez and Perona, 1999), and c-jun mRNA was
robustly induced by cisplatin in the present studies, even after
24 h. Cisplatin also resulted in the repression of several genes,
most notably a family of molecular chaperones which appear to
be co-regulated by ATF-6 and have been implicated in pre-
venting Ca21-dependent cell death (Liuet al., 1998; Yoshidaet
al., 1998).

Taken together, these rather preliminary observations sug-
gest that the ability of cisplatin to cause apoptosis in HepG2
cells may be determined by the relative levels of apoptotic-
regulated versus anti-apoptotic–regulated genes and activities.
For instance, Fas causes apoptosis in HepG2 cells (Mulleret
al., 1997) but Fas-dependent apoptosis is blocked by the for-
mation of an inactive complex between procaspase 3 and
p21waf1/cip1 (Suzuki et al., 1998), which was also induced by
cisplatin in these studies. In addition, both pro-apoptotic (Bax,
Bak) and anti-apoptotic (BAG-1) proteins were also induced
by cisplatin in these studies (Adams and Cory, 1998). In the
future, more extensive microarray experiments could actually
determine the ratios of different critical gene products that may
decide cellular fate following exposure to DNA damaging
agents. Although additional morphological and biochemical
experiments to determine the nature of cell death were outside
the scope of the present study, research correlating gene ex-
pression with cytotoxic mechanisms (for example, apoptosis
vs. necrosis) could lead to improved understanding of these
complex phenomena.

One illustration of the benefit of this type of microarray
experiment is evidenced by the detection of cisplatin-inducible
transcripts in these studies that had not been previously de-
scribed, but which are, nevertheless, consistent with recent
findings in the literature. For instance, these studies detected
rather robust and consistent induction of a rad6 homolog in
HepG2 cells exposed to cisplatin, suggesting that this mam-
malian homolog might play a role in the response to cisplatin-
induced DNA damage. During the preparation of this manu-
script, Simonet al. demonstrated thatS. cerevisiaestrains
lacking therad6allele are extremely hypersensitive to the toxic
effects of cisplatin compared with wild-type or other mutant
rad strains (Simonet al., 2000). Thus, results from a purely

[(SDD ù SDA) ø (SAA ù SDA)] ù [(SDD ù SDN) ø (SNN ù SDN)], whereø andù
represent union and intersection, respectively. The intersections involving the
anti-inflammatory and nontoxic control groups (lower diagram) were ignored
in the determination of the final gene set, because they repeatedly produced a
null set for the final gene set. No genes resulting from this union of intersects
were common to the genes sets derived from the analyses involving DNA
damagers. Therefore, genes that minimized the similarity between anti-inflam-
matories and DNA-damaging agents and between nontoxic controls and DNA
damagers maximized the similarity between anti-inflammatories and nontoxic
controls.

FIG. 12. Correlation optimization algorithm. The optimization algorithm
was a “brute force” type, supervised-learning algorithm that relies on the
computer’s processing power to perform calculations on all pairs of experi-
ments in all pairs of 2 groups. The groups of treatments from which data were
used for algorithm optimization were DNA damaging-agents, anti-inflamma-
tories, and non-genotoxic controls. By focusing on one gene at a time and
determining each gene’s effect on average correlation coefficient, the algo-
rithm selected genes that maximized the average intra-group correlation coef-
ficient and minimized the average inter-group correlation coefficient for all
pairs of groups in our analysis. Application of the algorithm resulted in 6
group/group comparisons and their associated “optimized” gene sets.
Gene SetDNA damagers, DNA damagers,SDD; gene SetDNA damagers, antiinflammatories,SDA; gene
SetDNA damagers, notoxic controls,SDN; gene Setantiinflammatories, antiinflammatories,SAA; gene
Setantiinflammatories, notoxic controls,SAN; gene Setnotoxic controls, notoxic controls,SNN. The genes
in the resulting 6 gene sets were reduced further by taking the intersec-
tion of the union of the intersection of the initial gene sets as displayed
graphically in the Venn diagrams or by the following notation:
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functional genetic screen in yeast are consistent with our ob-
servation of mammalian rad6 homolog induction in HepG2
cells following exposure to cisplatin.

The supervised methods employed here (statistical brute
force versus a computational algorithm for selecting gene sets
that maximize/minimize Pearson’s correlations) produced
overlapping but distinct subsets of genes for discriminating
between DNA-damaging agents and anti-inflammatory com-
pounds. It is unclear at present whether either of these methods
reflects the better approach until they are tested for assignment
of mechanism to additional unknowns. Larger scale experi-
ments on gene chips containing greater numbers of genes
should allow the use of unsupervised clustering methods (hi-
erarchical, K-means, neural networks) that will likely provide
more powerful approaches to unbiased toxicant classification.
Utilization of these types of learning methods would also allow
the analysis of multiple time points to group toxicants by sets

of genes that are similarly expressed in temporal fashion be-
tween treatments, likely improving pattern recognition in the
future.

In the end, it will be important to compare these and other
responses in HepG2 cells to other cellular andin vivo systems
to determine whether response patterns are similar across dif-
ferent systems. The occurrence of characteristic responses
across a variety of systems could allow the more rapid devel-
opment of analytical capabilities. Because of an apparent de-
ficiency in C/EBPa, HepG2 cells lack several key CYPs and
other enzymes responsible for metabolism (Joveret al., 1998).
This paucity of metabolic capability almost certainly affects
the transcriptional responses observed in HepG2 cells and in
other more metabolically competent systems. It should be
possible to gauge the likely impact of this issue once a suffi-
cient number of studies are published. In the same way it will
be possible to compare the variability and magnitude of re-

FIG. 13. Correlational analysis of all compounds in the database, using genes identified by the algorithm-based optimization gene set for distinguishing
cisplatin and diflunisal/flufenamic acid. The following genes were identified by the algorithm (those in common with statistically based approaches are italicized):
ATP-dependent helicase II (Ku80); c-abl; epoxide hydrolase; GOS24 (NUP475);alpha-tubulin; cyclin-dependent kinase 4; cytochrome p450 1A1; ERK 1;
glutathione peroxidase; PCNA; IB-a; replication protein A (70 kDa subunit); thymidylate synthase; hsp90; caspase 3; NADPH quinone oxidoreductase-1
(DT-diaphorase); catalase;damage-specific DNA binding protein p48 subunit; endothelin-converting enzyme; MET proto-oncogene.
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sponse patterns in different test systems. Additionally it may be
worthwhile to monitor baseline variability using a reference set
of mRNAs. Baseline variability may be an important consid-
eration in selection of a test system, especially for methodol-
ogies using Cy3/Cy5 fluorescence, in which results are char-
acteristically expressed relative to an untreated control.

Current efforts in this laboratory are underway to determine
whether other biological systems may yield more reproducible
and robust transcriptional profiles than the HepG2 model system.
For instance, studying the effects of toxicants in primary rat
hepatocytes will allow comparison with effects in rat liver fol-

lowing treatmentsin vivo. These types of studies will be crucial in
determining whether transcriptional profiling in model systems is
relevant toin vivo toxicity testing and thus useful for streamlining
drug discovery. The predictive power of the rather limited gene
sets identified in the present studies suggests that gene-expression-
based approaches will continue to gain acceptance and application
as powerful new tools for toxicity testing.
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APPENDIX

Genes Assessed by Microarray in the Present Study

11-beta hydroxysteroid dehydrogenase type II
12-lipoxygenase
60S ribosomal protein L6
6-O-methylguanine-DNA methyltransferase
Activating transcription factor 3
Activating transcription factor 4
Activating transcription factor 4
Activin receptor type II
Adenine nucleotide translocator 1
Adhesion protein (SQM1)
Alcohol dehydrogenase 2
Alcohol dehydrogenase 4
Aldehyde dehydrogenase 1
Alpha 1-antitrypsin
Alpha-1 acid glycoprotein
Alpha-1 antichymotrypsin
Alpha-2-macroglobulin
Alpha-catenin
Alpha-tubulin
Annexin V
Apolipoprotein A1
Apolipoprotein AII
Apolipoprotein CIII
Aspartate aminotransferase, mitochondrial
Ataxia telangeictasia
ATP-dependent helicase II (70kDa)
ATP-dependent helicase II (Ku80)
BAG-1
BAK
Bax (alpha)
Bcl-xL
Beta-actin
Bilirubin UDP-glucuronosyltransferase isozyme 1
Biliverdin reductase
Branched chain acyl-CoA oxidase
BRCA1
C4b-binding protein
C5a anaphylatoxin receptor
c-abl
Calbindin-D (28kDa)
Calcineurin-B
Calnexin
Calreticulin
Carnitine palmitoyl-CoA transferase
Caspase 1

Caspase 3
Caspase 4
Caspase 6
Caspase 7
Caspase 8
Catalase
Catechol-O-methyltransferase
Cathepsin L
c-erbA-2
c-erbB-2
Ceruloplasmin
c-fms
c-fos
Checkpoint kinase-1
c-H-ras
c-jun
Clusterin
c-myc
Colony-stimulating factor-1
Complement component C3
Connexin-32
Connexin-40
Corticosteroid binding globulin
Creatine kinase b
Cyclin D1
Cyclin D3
Cyclin dependent kinase 2
Cyclin dependent kinase 4
Cyclin G
Cyclin-dependent kinase 4 inhibitor B (P15)
Cyclin-dependent kinase 4 inhibitor B (P16)
Cyclin-dependent kinase 4 inhibitor P27kip1
Cystic fibrosis transmembrane conductance regulator
Cytochrome c oxidase subunit IV
Cytochrome P450 1A1
Cytochrome P450 1B1
Cytochrome P450 2A3
Cytochrome P450 4A
Cytochrome P450 4A1
Damage-specific DNA binding protein p48 subunit
Death receptor 5 (DR5)
Defender against cell death-1
Dihydrofolate reductase
Disulfide isomerase related protein (ERp72)
DNA binding protein inhibitor ID2

DNA dependent helicase
DNA dependent protein kinase
DNA ligase I
DNA ligase IV
DNA mismatch repair protein (MLH1)
DNA mismatch repair protein (PMS2)
DNA mismatch repair protein (PMS-6)
DNA mismatch repair/binding protein (MSH3)
DNA polymerase alpha
DNA polymerase beta
DNA repair and recombination homologue (RAD

52)
DNA repair protein (RAD 50)
DNA repair protein XP-D
DNA repair protein XP-D
DNA replication factor C (36kDa)
DNA topoisomerase I
DNA topoisomerase II
DRA
Dynein light chain 1
E2F-1
Early growth regulated protein 1
E-cadherin
Endothelin converting enzyme
Enolase alpha
Enoyl CoA hydratase
Epoxide hydrolase
ERCC 1 (excision repair protein)
ERCC 3 (DNA repair helicase II)
ERCC 5 (excision repair protein)
ERCC 6 (excision repair protein)
ERK1
Erythropoietin receptor
Estrogen receptor
Farnesol receptor
Fas antigen
FEN-1 (endonuclease)
Ferritin H-chain
FIC1
Flavin containing monooxygenase 1
FosB
Fra-1
Fyn proto-oncogene
Gadd153
Gadd45
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APPENDIX—Continued

Gamma-glutamyl hydrolase precursor
Gamma-glutamyl transpeptidase
Glucose-6-phosphate dehydrogenase
Glucose-regulated protein 78
Glucose-regulated protein 94
glucosylceramide synthase
Glutathione peroxidase
Glutathione reductase
Glutathione S-transferase alpha subunit
Glutathione S-transferase theta-1
Glutathione synthetase
Glyceraldehyde 3-phosphate dehydrogenase
GOS24 (NUP475)
Growth-arrested-specific protein 1
Growth-arrested-specific protein 3
GT mismatch binding protein
Heat shock protein 70
Heat shock protein 90
Heme oxygenase-1
Hepatic lipase
Hepatocyte growth factor
Hepatocyte growth factor receptor
Hepatocyte nuclear factor 4
Histone 2A
Histone 2B
HMG CoA reductase
Hypoxanthine-guanine phosphoribosyltransferase
Hypoxia-inducible factor 1 alpha
ID-1
IkB-a
Inhibitor of apoptosis protein 1
Insulin-like growth factor binding protein 1
Insulin-like growth factor I
Integrin beta1
Intercellular adhesion molecule-1
Intercellular adhesion molecule-3
Interferon inducible protein 15
Interleukin-1 alpha
Interleukin-1 beta
Interleukin-13
Interleukin-6
Interleukin-8
JNK1 stress activated protein kinase
Ku autoimmune antigen gene (p80)
Lactoferrin
Leukemia inhibitory factor (LIF)
Lipopolysaccharide binding protein
Lipoprotein lipase precursor
Liver fatty acid binding protein
L-myc
Luteinizing hormone
Lysyl oxidase

Macrophage inflammatory protein-2 alpha
Mannose receptor
Matrix metalloproteinase-2
MDM-2
MET proto-oncogene
Mitogen activated protein kinase (P38)
Mitogen inducible gene-2
Monoamine oxidase A
Monoamine oxidase B
Monocyte chemotactic protein-1
Multidrug resistant protein-1
Multidrug resistant protein-3
MutL homologue (MLH1)
MutS homologue (MSH2)
Myelin basic protein
Myeloid cell differentiation protein-1
NADPH quinone oxidoreductase-1 (DT-diaphorase)
NF-kappaB (p65)
Nitric oxide synthase-1, inducible
Nucleic acid binding protein
Nucleoside diphosphate kinase beta isoform
Octamer binding protein 1
Organic anion transporter 1
Ornithine decarboxylase
Osteopontin
OX40 ligand
Oxygen regulated protein 150
p53
PAPS synthetase
P-cadherin
Peroxisomal 3-ketoacyl-CoA thiolase 2
Peroxisomal acyl-CoA oxidase
Peroxisomal enoyl-CoA hydratase
Peroxisomal fatty acyl-CoA oxidase
Peroxisome assembly factor 1
Peroxisome biogenesis disorder protein-1
Peroxisome proliferator activated receptor alpha
Phenol sulfotransferase
Phenylalanine hydroxylase
Phosphoenolpyruvate carboxykinase
Phosphoglyceride kinase
Phospholipase A2
Plasminogen activator inhibitor 2
Platelet derived growth factor B
Platelet/endothelial cell adhesion molecule-1
Poly(ADP-ribose) polymerase
Prohibitin
Proliferating cell nuclear antigen gene
Prostaglandin H synthase
Protein disulfide isomerase (PDI)
Protein kinase C alpha
Protein-tyrosine phosphatase

RAD
RAD 51 homologue
RANTES
Ref-1
Replication factor C, 40-kDa subunit (A1)
Replication protein A (70 kDa subunit)
Retinoblastoma
Retinoic acid receptor gamma-1
Retinoid3receptor alpha
Ribonucleotide reductase M1 subunit
Ribosomal protein L13A
Ribosomal protein S9
RNA-dependent helicase
Serum amyloid A1
Serum amyloid A2-alpha
Silencer of death domains (SODD)
Spermidine/spermine N1-acetyltransferase (SSAT)
STAT 3
Stromelysin-1
Superoxide dismutase Cu/Zn
Superoxide dismutase Mn
Survivin
Tau protein
T-cell cyclophilin
Thioredoxin
Thymidine kinase
Thymidylate synthase
Thymosin beta-10
Tissue inhibitor of metalloproteinases-1
Tissue transglutaminase
TNF receptor-1 associated protein (TRADD)
Transcription factor IID
Transferrin
Transferrin receptor
Transthyretin
Tryptophanyl-tRNA synthetase
Type 1 interstitial collagenase
Tyrosine aminotransferase
Ubiquitin conjugating enzyme (RAD 6 homologue)
Ubiquitin-homology domain protein PIC1
UDP-glucuronosyltransferase 2B
Uncoupling protein 2
Urokinase plasminogen activator receptor
UV excision repair protein RAD 23 (XP-C)
Vascular cell adhesion molecule 1 (VCAM-1)
Vascular endothelial growth factor receptor 1 (flt-1)
Very long-chain acyl-CoA dehydrogenase
Vimentin
Waf1
XRCC1 (DNA repair protein)
Zinc-finger protein-37
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Compounds Analyzed by Microarray in the Present Study

1-chloro-2-nitrobenzene
2,4-dinitrophenol
2-acetylaminofluorene
2-azido-2-deoxycytidine
4-acetamidofluorene
5-azacytidine
5-chlorouracil
5-fluorouracil
6-mercaptopurine
acetaminophen
acetylsalicylic acid
acridine
actinomycin
aminopterin
aminotriazole
antimycin A
antipyrine
busulfan
caffeine
camptothecin
carbamazepine
carboplatin
carmustine
chlorambucil
chloroquine
cimetidine
cisplatin
clenbuterol
clofibrate

clozapine
colchicine
corticosterone
cycloheximide
cyclophosphamide w/o S9
cyclophosphamide with S9
cytosine arabinoside
dacarbazine
dexamethasone
diethylhexylpthalate
diethylstilbestrol
diflunisal
digitoxin
dimethylhydrazine
DMSO
doxorubicin
erythromycin
ethyl methanesulfonate
etoposide
fenofibrate
flufenamic acid
guanine
hydroxyurea
indomethacin
iodoacetamide
isonicotinic acid
mechlorethamine
media
melatonin

methotrexate
methyl methanesulfonate
mitomycin C
mitoxantrone
naloxone
naproxen
nicotine
nitrofurantoin
N-nitroso-N-ethylurea
N-nitroso-N-methylurea
oligomycin
o-toluidine
paclitaxel
phorbol ester (PMA)
prednisone
proflavin
progesterone
puromycin
rifampicin
sodium azide
streptozotocin
tacrine
tamoxifen
thioguanine
transplatin
triethylenemelamine
triethylenethiophosphoramide
verapamil
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